Repository navigation
rt-detr
- Website
- Wikipedia
Object Detection toolkit based on PaddlePaddle. It supports object detection, instance segmentation, multiple object tracking and real-time multi-person keypoint detection.
🔥🔥🔥 专注于YOLO11,YOLOv8、TYOLOv12、YOLOv10、RT-DETR、YOLOv7、YOLOv5改进模型,Support to improve backbone, neck, head, loss, IoU, NMS and other modules🚀
🔥🔥🔥TensorRT for YOLOv8、YOLOv8-Pose、YOLOv8-Seg、YOLOv8-Cls、YOLOv7、YOLOv6、YOLOv5、YOLONAS......🚀🚀🚀CUDA IS ALL YOU NEED.🍎🍎🍎
🚀🚀🚀 YOLO series of PaddlePaddle implementation, PP-YOLOE+, RT-DETR, YOLOv5, YOLOv6, YOLOv7, YOLOv8, YOLOv10, YOLO11, YOLOX, YOLOv5u, YOLOv7u, YOLOv6Lite, RTMDet and so on. 🚀🚀🚀
C++ object detection inference from video or image input source
This repository provides a PyTorch implementation of RT-DeTR, a state-of-the-art Realtime Detection Transformer for object detection tasks.
Real-time pose estimation pipeline with 🤗 Transformers
Tensorrt codebase to inference in c++ for all major neural arch using onnx
Deploy RT-EDTR with onnx from paddlepaddle framwork and graph cut
The repository contains multiple algorithms for 1D and 2D barcode localization proposed in different papers in the past years. The repository contains the tools to measure the performance of those algorithms
Hybrid RT DETR: Hybrid encoder-decoder network for end-to-end object detection in UAV imagery
RT-DETR(v2)のPythonでのONNX推論サンプル
RT-DETR(v2 ※PyTorch版)をGoogle Colaboratory上で訓練しONNXのファイルをエクスポートするサンプル
D-FINEをGoogle Colaboratory上で訓練しONNXのファイルをエクスポートするサンプル
Evaluating the performance of DETR, RT-DETR and YOLO-V8 on Video-Diver-Dataset (VDD)
D-FINEのPythonでのONNX推論サンプル