Repository navigation
matplotlib
- Website
- Wikipedia
30 days of Python programming challenge is a step-by-step guide to learn the Python programming language in 30 days. This challenge may take more than100 days, follow your own pace. These videos may help too: https://www.youtube.com/channel/UC7PNRuno1rzYPb1xLa4yktw
Python Data Science Handbook: full text in Jupyter Notebooks
Data science Python notebooks: Deep learning (TensorFlow, Theano, Caffe, Keras), scikit-learn, Kaggle, big data (Spark, Hadoop MapReduce, HDFS), matplotlib, pandas, NumPy, SciPy, Python essentials, AWS, and various command lines.
Essential Cheat Sheets for deep learning and machine learning researchers https://medium.com/@kailashahirwar/essential-cheat-sheets-for-machine-learning-and-deep-learning-researchers-efb6a8ebd2e5
PyGWalker: Turn your pandas dataframe into an interactive UI for visual analysis
阿布量化交易系统(股票,期权,期货,比特币,机器学习) 基于python的开源量化交易,量化投资架构
Statistical data visualization in Python
Draw pretty maps from OpenStreetMap data! Built with osmnx +matplotlib + shapely
人工智能学习路线图,整理近200个实战案例与项目,免费提供配套教材,零基础入门,就业实战!包括:Python,数学,机器学习,数据分析,深度学习,计算机视觉,自然语言处理,PyTorch tensorflow machine-learning,deep-learning data-analysis data-mining mathematics data-science artificial-intelligence python tensorflow tensorflow2 caffe keras pytorch algorithm numpy pandas matplotlib seaborn nlp cv等热门领域
An open access book on scientific visualization using python and matplotlib
Open Machine Learning Course
《利用Python进行数据分析·第2版》
Official Matplotlib cheat sheets
Panel: The powerful data exploration & web app framework for Python
A comprehensive machine learning repository containing 30+ notebooks on different concepts, algorithms and techniques.
Visual analysis and diagnostic tools to facilitate machine learning model selection.
Financial Markets Data Visualization using Matplotlib
A comprehensive list of Deep Learning / Artificial Intelligence and Machine Learning tutorials - rapidly expanding into areas of AI/Deep Learning / Machine Vision / NLP and industry specific areas such as Climate / Energy, Automotives, Retail, Pharma, Medicine, Healthcare, Policy, Ethics and more.