Repository navigation
resnext
- Website
- Wikipedia
Pretrained ConvNets for pytorch: NASNet, ResNeXt, ResNet, InceptionV4, InceptionResnetV2, Xception, DPN, etc.
Segmentation models with pretrained backbones. Keras and TensorFlow Keras.
Practice on cifar100(ResNet, DenseNet, VGG, GoogleNet, InceptionV3, InceptionV4, Inception-ResNetv2, Xception, Resnet In Resnet, ResNext,ShuffleNet, ShuffleNetv2, MobileNet, MobileNetv2, SqueezeNet, NasNet, Residual Attention Network, SENet, WideResNet)
利用pytorch实现图像分类的一个完整的代码,训练,预测,TTA,模型融合,模型部署,cnn提取特征,svm或者随机森林等进行分类,模型蒸馏,一个完整的代码
Caffe models (including classification, detection and segmentation) and deploy files for famouse networks
Classification models trained on ImageNet. Keras.
Books, Presentations, Workshops, Notebook Labs, and Model Zoo for Software Engineers and Data Scientists wanting to learn the TF.Keras Machine Learning framework
Simple Tensorflow implementation of "Squeeze and Excitation Networks" using Cifar10 (ResNeXt, Inception-v4, Inception-resnet-v2)
PyTorch implementation of CNNs for CIFAR benchmark
A tensorflow2 implementation of some basic CNNs(MobileNetV1/V2/V3, EfficientNet, ResNeXt, InceptionV4, InceptionResNetV1/V2, SENet, SqueezeNet, DenseNet, ShuffleNetV2, ResNet).
A c++ trainable semantic segmentation library based on libtorch (pytorch c++). Backbone: VGG, ResNet, ResNext. Architecture: FPN, U-Net, PAN, LinkNet, PSPNet, DeepLab-V3, DeepLab-V3+ by now.
Speech commands recognition with PyTorch | Kaggle 10th place solution in TensorFlow Speech Recognition Challenge
PyTorch implementation for 3D CNN models for medical image data (1 channel gray scale images).
基于tf.keras的多标签多分类模型
PyTorch implementation of Dynamic Grouping Convolution and Groupable ConvNet with pre-trained G-ResNeXt models