Repository navigation
gbm
- Website
- Wikipedia
Scalable, Portable and Distributed Gradient Boosting (GBDT, GBRT or GBM) Library, for Python, R, Java, Scala, C++ and more. Runs on single machine, Hadoop, Spark, Dask, Flink and DataFlow
A fast, distributed, high performance gradient boosting (GBT, GBDT, GBRT, GBM or MART) framework based on decision tree algorithms, used for ranking, classification and many other machine learning tasks.
A fast, scalable, high performance Gradient Boosting on Decision Trees library, used for ranking, classification, regression and other machine learning tasks for Python, R, Java, C++. Supports computation on CPU and GPU.
H2O is an Open Source, Distributed, Fast & Scalable Machine Learning Platform: Deep Learning, Gradient Boosting (GBM) & XGBoost, Random Forest, Generalized Linear Modeling (GLM with Elastic Net), K-Means, PCA, Generalized Additive Models (GAM), RuleFit, Support Vector Machine (SVM), Stacked Ensembles, Automatic Machine Learning (AutoML), etc.
A Lightweight Decision Tree Framework supporting regular algorithms: ID3, C4.5, CART, CHAID and Regression Trees; some advanced techniques: Gradient Boosting, Random Forest and Adaboost w/categorical features support for Python
A self-generalizing gradient boosting machine that doesn't need hyperparameter optimization
Ytk-learn is a distributed machine learning library which implements most of popular machine learning algorithms(GBDT, GBRT, Mixture Logistic Regression, Gradient Boosting Soft Tree, Factorization Machines, Field-aware Factorization Machines, Logistic Regression, Softmax).
A full pipeline AutoML tool for tabular data
Performance of various open source GBM implementations
This is the Docker container based on open source framework XGBoost (https://xgboost.readthedocs.io/en/latest/) to allow customers use their own XGBoost scripts in SageMaker.
Train Gradient Boosting models that are both high-performance *and* Fair!
Ruby Scoring API for PMML
[ICML 2019, 20 min long talk] Robust Decision Trees Against Adversarial Examples
Building Decision Trees From Scratch In Python